Assessing Probabilistic Inference by Comparing the Generalized Mean of the Model and Source Probabilities
نویسنده
چکیده
An approach to the assessment of probabilistic inference is described which quantifies the performance on the probability scale. From both information and Bayesian theory, the central tendency of an inference is proven to be the geometric mean of the probabilities reported for the actual outcome and is referred to as the “Accuracy”. Upper and lower error bars on the accuracy are provided by the arithmetic mean and the −2/3 mean. The arithmetic is called the “Decisiveness” due to its similarity with the cost of a decision and the −2/3 mean is called the “Robustness”, due to its sensitivity to outlier errors. Visualization of inference performance is facilitated by plotting the reported model probabilities versus the histogram calculated source probabilities. The visualization of the calibration between model and source is summarized on both axes by the arithmetic, geometric, and −2/3 means. From information theory, the performance of the inference is related to the cross-entropy between the model and source distribution. Just as cross-entropy is the sum of the entropy and the divergence; the accuracy of a model can be decomposed into a component due to the source uncertainty and the divergence between the source and model. Translated to the probability domain these quantities are plotted as the average model probability versus the average source probability. The divergence probability is the average model probability divided by the average source probability. When an inference is over/under-confident, the arithmetic mean of the model increases/decreases, while the −2/3 mean decreases/increases, respectively.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملComparing the Shape Parameters of Two Weibull Distributions Using Records: A Generalized Inference
The Weibull distribution is a very applicable model for the lifetime data. For inference about two Weibull distributions using records, the shape parameters of the distributions are usually considered equal. However, there is not an appropriate method for comparing the shape parameters in the literature. Therefore, comparing the shape parameters of two Weibull distributions is very important. I...
متن کاملComparing Mean Vectors Via Generalized Inference in Multivariate Log-Normal Distributions
Abstract In this paper, we consider the problem of means in several multivariate log-normal distributions and propose a useful method called as generalized variable method. Simulation studies show that suggested method has a appropriate size and power regardless sample size. To evaluation this method, we compare this method with traditional MANOVA such that the actual sizes of the two methods ...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملAnother View of the Classical Problem of Comparing Two Probabilities
The usual calculation of the P-value for the classical problem of comparing probabilities is not always accurate. This issue arose in the context of a legal dispute which depended on when some written material was written in a diary. The problem raises some issues on the foundations of statistical inference.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017